数列{an}的通项公式an=COS(nπ),其前n项和为sn,则S2012等于()
A、1006
B、2012
C、503
【正确答案】:A
【题目解析】:考查:三角函数的周期性和数列求和,所以先要找出周期,然后分组计算和.a4n+1=(4n+1)×cos[(4n+1)π/2]=(4n+1)×cos(π/2)=0,44n+1=(4n+2)×cos[(4n+2)π/2]=(4n+2)×cosπ=-(4n+2),a4n+1=(4n+3)×cos[(4n+3)π/2]=(4n+3)×cos(3π/2)=0,a4n+1=(4n+4)×cos[(4n+4)π/2]=(4n+4)×cos2π=4n+4,所以a4n+1+a4n-2+a4n+3+a4n+4=2.即S2012=(2012/1)×2=1006.