求y=3tan(π/6-1/4)的周期及单调区间.
求y=3tan(π/6-1/4)的周期及单调区间.
【正确答案】:y=3tan(π/6-x/4)=-3tan(x/4-π/6),所以T=π/|ω|=4π,所以y=3tan(π/6-x/4)的周期为4π;由kπ-π/2<x/4-π/6<kπ+π/2,得4kπ-4π/3<x<4kπ+8π/3(k∈Z),y=3tan(x/4-π/6)在(4kπ-4π/3,4kπ+8π/3)(k∈Z)内单调递增,所以y=3tan(π/6-x/4)在(4kπ-4π/3,4kπ+8π/3)(k∈Z)内单调递减.
Top