求y=2cos2x+2√3sinx•cosx-1的振幅,最小正周期,最大值及单调减区间.
【正确答案】:y=2cos2x+2√3sinx•cosx-1=2[(1+cos2x)/2]+√3sin2x-1 =cos2x+√3sin2x=2[(1/2)cos2x+(√3/2)sin2x)=2[sin(π/6)cos2x+cos(π/6)•sin2x] =2sin(π/6+2x). 振幅A=2,t=2π/2=π,ymax=2,ymin=-2 单调减区间[kπ+π/6,kπ+(2/3)π](k∈Z)