已知二次型f(x1,x2,x3,x4)=(x1+a1x2)2+(x2+a2x3)2+(x3+a3x4)2+(x4+a4x1)2为正定二次型,其中a1,a2,a3,a4为实数,证明ala2a3a4≠1.
已知二次型f(x1,x2,x3,x4)=(x1+a1x2)2+(x2+a2x3)2+(x3+a3x4)2+(x4+a4x1)2为正定二次型,其中a1,a2,a3,a4为实数,证明ala2a3a4≠1.
【正确答案】:证明:由于对任意一组x1,x2,x3,x4不全为0,有f(x1,x2,x3,x4)≥0,因f(x1,x2,x3,x4)正定的充分必要条件是齐次线性方程组 {x1+a1x2=0 x2+a2x3=0 x3+a3x4=0 a4x1+x4=0 仅有零解,即系数行列式. D= | 1 a1 0 0| | 0 1 a2 0| | 0 0 1 a3| |a4 0 0 1| = |1 a2 0| |0 1 a3| |0 0 1| -a4 |a1 0 0| |l a2 0| |0 1 a3| =1-a1a2a3a4≠0 所以f(x1,x2,x3,x4)正定的充分必要条件是 a1a2a3a4≠1
Top