求齐次方程组的通解:
{x1+x2+x3+4x4-3x5=0
x1-x2+3x3-2x4-x5=0
2x1+x2+3x3+5x4-5x5=0
3x1+x2+5x3+6x4-7x5=0
【正确答案】:解:对系数矩阵作初等行变换,有 (1 1 1 4 -3 1 -1 3 -2 -1 2 1 3 5 -5 3 1 5 6 -7) → (1 1 1 4 -3 0 -2 2 -6 2 0 -1 1 -3 1 0 -2 2 -6 2) → (1 0 2 1 -2 0 1 -1 3 -1 0 0 0 0 0) 因此同解方程组为 {x1=-2x3-x4+2x5 x2=x3-3x4+x5, x3,x4,x5为自由未知量,分别取 {x3=1 x4=0 x5=0, {x3=0 x4=1 x5=0, {x3=0 x4=0 x5=1 得到基础解系数 a1= (-2 1 1 0 0), a2= (-1 -3 0 1 0), a3= (2 1 0 0) 则k1a1+k2a2+k3a3是方程组的通解。