设L是曲线y=x3与直线y=x所围成区域的整个边界曲线,f(x,y)是连续函数,则曲线积分∫Lf(x,y)ds=()
设L是曲线y=x3与直线y=x所围成区域的整个边界曲线,f(x,y)是连续函数,则曲线积分∫Lf(x,y)ds=()
A、∫01f(x,x3)dx+∫01f(x,x)dx
B、∫01f(x,x3)dx+∫01f(x,x)√2dx
C、∫01(x,x3)•√1+9x4dx+∫01f(x,x)√2dx
D、∫-11[f(x,x3)√1+9x4+f(x,x)√2]dx
【正确答案】:D
【题目解析】:曲线y=x与y=x的交点为A(-1,-1),B(1,1),记曲线y=x3(-1≤x≤1) 为L1,直线y=x(-1≤x≤1)为L2 ,则有 ∫L(x,y)ds=∫L1f(x,y)ds+∫L1(x,y)ds =∫-11f(x,x2)√1+9x4dx+∫-11(x,x)√2dx =∫-11(x,x2)√1+9x4+√2f(x,x)]dx
Top