求函数f(x,y)=4(x-y)-x2-2y2的极值.
求函数f(x,y)=4(x-y)-x2-2y2的极值.
【正确答案】:∵∂f/∂x=4-2x,∂f/∂y=-4-4y ∴得驻点坐标为(2,-1). ∵∂2f/∂x2=-2 ∂2f/∂x∂y=0 ∂2f/∂y2=-4 而△=B2-AC=-8﹤0 且A=-2﹤0 ∴f(x,y)在点(2,-1)处取得极大值为f(2,-1)=6.
Top