将f(x)=arctan(1-2x)/(1+2x)展开成x的幂级数,并求级数∑∞n=1(-1)n/(2n+1)的和.→∞n2αn=0
【正确答案】:因为 f′(x)=-2/(1+4x2)=-2∑∞n=0(-1)n4nx2n x∈(-1/2,1/2) 又f(0)=π/4,所以 f(x)=f(0)+∫0xf′(t)dt=π/4-2∫0x[∑∞n=0(-1)n4nt2ndt] =π/4-2∑∞n=0[(-1)n4n/(2n+1)]x2n+1 x∈(-1/2,1/2) 因为级数∑∞n=0收敛,函数f(x)在x=1/2处连续,所以 f(1/2)=π/4-2∑∞n=0[(-1)n4n/(2n+1)•1/22n+1] 再由f(1/2)=0,得 ∑∞n=0(-1)n/(2n+1)=π/4-f(1/2)=π/4