∫∫Dxy2cos(x2y)dσ,其中D={(x,y)∣0≤x≤2,0≤y≤π/2}.
【正确答案】:∫∫Dxy2cos(x2y)dσ=∫0π/2dy∫02xy2cos(x2y)dx =∫0π/2[(1/2)y∫02cos(x2y)d(x2y)]dy =1/2∫0π/2[ysin(x2y)∣02]dy =1/2∫0π/2ysin4ydy=-(1/8)∫0π/2ydcos4y =-(1/8)ycos4y∣0π/2+1/8∫0π/2cos4ydy =-(π/16)+(1/32)sin4y∣0π/2=-(π/16)