用柱面坐标计算下列三重积分:
(1)I=∫∫∫Ωxydυ,其中Ω是由x2+y2=1及平面z=0,z=1所围的在第一卦限内的区域;
(2)I=∫∫∫Ωzdυ,其中Ω是由曲面z=√2-x2-y2及z=x2+y2
围成的区域;
(3)I=∫∫∫Ω(x2+y2)dυ,其中Ω是由曲面x2+y2=2z及平面
z=2围成的区域.
【正确答案】:(1)令x=rcosθ,y=rsinθ,2=z,则: I=∫∫∫Ωxydυ=∫0π/2dθ∫01dr ∫01r•rcosθ•rsinθdz =∫0π/2dθ∫01r3sinθcosθdr =∫0π/2[(r4/4)sinθcosθ∣01]dθ =∫0π/2(1/4)sinθcosθdθ =∫0π/2(1/8)sin2θdθ=(-1/16)cosθ∣0π/2 =1/8 (2)令x=rcosθ,y=rsinθ,z=z,则: I=∫∫∫Ωzdυ=∫02πdθ∫01 dr ∫r2√2-r2z•rdz= ∫02πdθ∫01r(z2/2∣ r2√2-r2)dr =∫02πdθ∫01r[(2-r2)/2-r4/2]dr =∫02πdθ∫01r(1-r2)/2-r4/2)dr =∫02π(r2)/2-r4/8-r6/12∣01)dθ= ∫02π(1/2-1/8-1/12)dθ=(7/24)θ∣02π=(7/12)π (3)令x=rcosθ,y=rsinθ,z=z,则: I=∫∫∫Ω(x2+y2)dθ=∫02πd ∫02dr∫r2/22r3dz= ∫02πdθ∫02(2r3-r5/2)dr =∫02π(r4/2-r6/12)∣02dθ= ∫02π(8-16/3)dθ=(8/3)θ∣02π=(16/3)π