用球面坐标计算下列三重积分:
(1)I=∫∫∫Ω(x2+y2+z2)dυ,其中Ω是由球面x2+y2+z2=1所围的区域;
(2)I=∫∫∫Ωz2dυ,其中Ω是两个球体x2+y2+z2≤R2
和x2+y2+z2≤2Rz的公共部分.
【正确答案】:(1)令x=rsinφcosθ,y=rsinφsinθ,z=rcosφ,则: I=∫∫∫Ω(x2+y2+z2)dυ= ∫02πdθ∫0πdφ∫01r2•r2sin9dr =1/5∫02πdθ∫0πsinφdφ=1/5∫02π(-cosφ∣0π)dθ =1/5∫02π2dθ=(4/5)π (2)令x=rsinφcosθ,y=rsinφsinθ,z=cosφ),则: I=∫∫∫Ωz2dυ=∫02πdθ∫0π/2dφ ∫√R2-r2sinφR+√R2-r2sinφr2cos2φ •r2sin2φdr =∫02πdθ∫0π/2cos2φsinφ(r5/5∣ √R2-r2sinφR+√R2-r2sinφ)d=(59/480)πR5