求锥面z=√x2+y2,与抛物面z=x2+y2所围立体的体积.
求锥面z=√x2+y2,与抛物面z=x2+y2所围立体的体积.
【正确答案】:z=√x2+y2与z=x2+y2所围立体在Oxy平面上的投影为 D={(x,y)∣x2+y2≤1}={(r,θ)∣0≤θ≤2π,0≤r≤1}, 所以立体体积V为 V=∫∫D[√(x2+y2)-(x2+y2)]dσ =∫0dθ∫01(r-r2)rdr=2π[(1/3)r 301-(1/4)r401] =π/6
Top