选择适当的坐标计算下列二重积分:
(1)I=∫∫D√(1-x2-y2)dσ其中D:
x2+y2≤1,x≥0,y≥0;
(2)I=∫∫Dy2dσ,其中D:-(π/2)≤x≤π/4,0≤y≤cosx;
(3)I=∫∫Dex2+y2,其中D:x2+y2≤4;
(4)I=∫∫Dxydσ,其中D是由y=x,y=x+a,y=a及y=3a
(a﹥0)围成的区域;
(5)I=∫∫D(x2-y2)dσ,其中D:0≤y≤sinx,0≤x≤π.
【正确答案】:(1)令x=rcosθ,y=rsinθ,则: I=∫∫D√(1-x2-y2)dxdy=∫0π/2dθ∫01 √(1-r2)•rdr =∫0π/2[(1/3)u3/2∣01)dθ=1/3∫0π/2 dθ=π/6 (2)I=∫∫Dy2dσ=∫-(π/2)π/4dx ∫0cosxy2dy=∫-(π/2)π/4[(1/3)y3 ∣0cosx]dx =∫-(π/2)π/4(1/3)cos3xdx= (1/3)∫-(π/2)π/4cos2xdsinx =(1/3)∫-(π/2)π/4(1-sin2x)dsinx=1/3[sinx-(1/3)sin3x] ∣π/4π/2 =(1/3)[√2/2+1-1/3×(√2/2)3-1/3]=2/9+5√2/36 (3)令x=rcosθ,y=rsinθ,则: I=∫∫Dex2+y2dσ= ∫02πdθ∫02er2.rd= ∫02π[(1/2)er2∣02]dθ =∫02π[(1/2)e4-1/2]dθ=π(e4-1) (4)∫∫Dxydσ=∫a3ady∫(y-a)yxydx= ∫a3a[(x2y/2)∣y-ay]dy =∫a3a[y3/2-(y-a)2y/2]dy =∫a3a[y3/2-y3/2+ay2-(a2/2)y]dy =∫a3a[ay2-(a2/2)y]dy =[(a/3)y3-(a2/4)y2]∣a3a=(20/3)a4 (5)I=∫∫D(x2-y2)dσ=∫0πdx∫0sinx (x2-y2)dy+∫π2πdx∫0sinx (x2-y2)dy =∫0π[(x2y-y3/3)∣0sinx]dx+ ∫π2π[(x2y-y3/3)∣0sinx]dx =∫0π(x2sinx-sin3x/3)dx+ ∫π2π(x2sinx-sin3x/3)dx =∫02π(x2sinx-sin3x/3)dx=π2-40/9