设二维随机变量(X,Y)的分布函数
F(x,y)=A[B+arctan(x/2][C+arctan(y/3)],
求:(1)常数A,B,C;
(2)(X,Y)的概率密度;
(3)(X,Y)关于X及关于Y的边缘概率密度.
【正确答案】:(1)由分布函数的性质,有: F(+∞,+∞)=A(B+π/2)(C+π/2)=1; F(x,-∞)=A[B+arctan (x-2)](C-π/2)=0; F(-∞,y)=A(B-π/2)[C+arctan(y/3)]=0. 从而得 C=π/2;B=π/2;A=1/π2. (2)F(x,y)=1/π2[π/2+arctan(x/2)][π/2+arctan(y/3)], 从而概率密度 f(x,y)=(∂2/∂x∂y)=6/[π2(x2+4)(y2+9)]• (3)fX(x)=∫+∞-∞f(x,y)dy =∫+∞-∞[6/π2(x2+4)(y2+9)]dy =6/π2(x2+4)∫+∞-∞[1/(y2+9)]dy =6/π2(x2+4)[(1/3)arctan(y/3)∣+∞-∞ =2/π(x2+4) FY(y)=∫+∞-∞f(x,y)dx=∫+∞-∞[6/π2(x2+4)(y2+9)]dx =6/π2(y2+9)∫+∞-∞[1/(x2+4)]dx = 6/π2(y2+9)[(1/2)arctan(x/2)]∣+∞-∞ =3/π(y2+9))