设二维连续随机变量(X,Y)的概率密度为
f(x,y)=
{Ae-(2x+3y),x﹥0,y﹥0;
0,其他
求:(1)常数A;
(2)(X,Y)的分布函数.
【正确答案】:(1)利用∫+∞-∞∫+∞-∞f(x,y)dxdy= 1定出A. ∫+∞-∞∫+∞-∞f(x,y)dxdy= ∫+∞0∫+∞0Ae-(2x+3y)dxdy =A∫+∞0Ae-(2x+3y)dx∫+∞0e-3ydy, =A(1/2)(1/3)=(1/6)A=1,得A=6. (2)F(x,Y)=∫x-∞∫y-∞f(u,υ)dudυ, 当x﹥0,y﹥0时,有 F(x,y)=∫x0∫y06e-(2u+3υ)dudυ=6 ∫x0e-2udu∫y0e-3υdυ=(1-e-2x)(1-e-3y), 而在其他区域,因为f(x,y)=0,故F(x,y)=0.从而有: F(x,y)= {(1-e-2x)(1-e-3y),当x﹥0,y﹥0; 0 ,其他