设二维随机变量(X,Y)的概率密度为
f(x,y)=
{1/8(x+y),0≤x≤2,0≤y≤2,
0,其他,
求Cov(X,Y).
设二维随机变量(X,Y)的概率密度为
f(x,y)=
{1/8(x+y),0≤x≤2,0≤y≤2,
0,其他,
求Cov(X,Y).
【正确答案】:E(XY)=∫20dx∫20(xy/8)(x+y)dy=4/3 E(X)=∫20dy∫20(x/8)(x+y)dx=7/6 E(Y)=∫20dx∫20(y/8)(x+y)dy=7/6 ∴Cov(X,Y)=E(XY)-E(X)•E(Y)=4/3-7/6×7/6=-(1/36)
Top