设随机变量X的概率密度为
f(x)=
{acosx,|x|≤π/2,
{0,其他.
求:(1)常数α;(2)P{0<x<π/4);(3)X的分布函数F(x).
【正确答案】:(1)由∫+∞-∞f(x)dx=∫π/2-(π/2)acosxdx=2∫π/20=2α=1得α=1/2 (2)P{0<x<π/4}=∫π/401/2cosxdx=√2/4 (3)当x<-(π/2)时F(x)=∫x-∞f(t)dt=0 当-(π/2)≤x<π/2时F(x)=∫x-(π/2)(1/2)costdt=1/2(1+sinx) 当x≥π/2时F(x)=∫π/2-(π/2)costdt=1 所以 X的分布函数为F(x)= {0 x<-(π/2) {1/2(1+sinx) -(π/2)≤x<π/2 {1 x≥π/2