已知二维随机变量(X,Y)的联合概率密度
f(x,y)=
{Cxy,0≤x≤1,0≤y≤1;
{0,其他
求:(1)常数C;
(2)(X,Y)的联合分布函数;
(3)P(X<Y).
【正确答案】:(1)由(X,Y)的联合概率密度的性质,有 ∫+∞-∞∫+∞-∞f(x,y)dxdy=C∫10∫10xydxdy=C/4=1, 所以C=4. (2)当x<0或Y<0时, F(x,y)=P(X≤x,Y≤y)=0; 当0≤x<1,0≤Y<1时, F(x,y)=∫x-∞∫y-∞f(u,υ)dudυ=4∫x0udu∫y0υdυ =x2y2; 当0≤x<1,y≥1时, F(x,y)=P(X≤x,Y≤y)=4∫x0udu∫y0υdυ=x2; 当x≥1,0≤y<1时, F(x,y)=P(X≤x,Y≤y)=4∫10udu∫y0υdυ=y2; 当x≥1,y≥1时, F(x,y)=P(X≤x,Y≤y)=4∫10udu∫y0υdυ=1; 所以(X,Y)的分布函数 F(x,y)= {0, x<0或y<0; {x2y2,0≤x<1,0≤y<1; {x2,0≤x<1,Y≥1; {Y2,x≥1,0≤y<1; {1, x≥1,Y≥1. (3)P(X<Y)=∫∫x<yf(x,y)dxdy=∫∫0≤x<y<1 =4∫10ydy∫y0xdx=1/2