设二维随机变量(X,Y)服从二维正态分布,其概率密度为
f(x,y)=(1/50π)e-[(x2+y2)/50]
证明X与Y相互独立.
【正确答案】:证明:fX(x)=∫+∞-∞f(x,y)dy=∫+∞-∞(1/50π)e-[x2+y2)/50]dy =1/50π∫+∞-∞e)e-(y2/50)dy=(1/5√2π)e-(x2/50) fY(Y)=∫+∞-∞f(x,y)dx=∫+∞-∞(1/50π)e-[(x2+y2)/50]dx =(1/50π)e-(y2+50)∫+∞-∞e-(x2/50)dx =(1/5√2π)e-y2/50 所以 f(x,y)=fX(x)•fY(y) 所以 X与Y相互独立.