设随机变量X1、X2的概率密度分别如下:
fX1(x)=
{2e-2x,x>0;
{0,x≤0.
fX2(x)=
{4e-4x,x>0
{0,x≤0
求E(x1+X2),E(2x1-3X22).
设随机变量X1、X2的概率密度分别如下:
fX1(x)=
{2e-2x,x>0;
{0,x≤0.
fX2(x)=
{4e-4x,x>0
{0,x≤0
求E(x1+X2),E(2x1-3X22).
【正确答案】:E(X1+X2)=E(X1)+E(X2) =∫+∞-∞xfX1(x)dx+∫+∞-∞xfX2(x)dx =∫+∞0x•2e-2xdx+∫+∞0+x•4e-4xdx =1/2+1/4=3/4 E(2X1-3X22)=2E(X1)-3E(X22) =2×(1/2)-3∫+∞0x2•4e-4xdx =1-3/8=5/8
Top