设随机变量X的概率密度f(x,y)=
{1+x,-1≤x≤0;
{1-x,0<x≤1;
{0,其他.
求D(X).
【正确答案】:D(X)=E(X2)-(E(X))2. 而E(x2)=∫+∞-∞x2f(x)dx =(∫0-1x2(1+x)dx+∫10x2(1-x)dx =∫01x2(1+x)dx+∫10x2(1-x)dx =[(1/3)x3+(1/4)x4]0-1+=[(1/3)x3+(1/4)x4]10=1/6. E(X)=∫+∞-∞∞xf(x)dx=∫01x(1+x)dx+∫10(1-x)dx=0. 所以D(X)=E(X2)-(E(X))2=1/6.