生产一种工业用绳,其质量指标是绳子所承受的最大拉力,假定该指标服从正态分布,原来生产的绳子指标均值μ0=15公斤,采用一种新原材料后,厂方称这种原材料能提高绳子的质量,为检验厂方的结论是否真实,从其新产品中随机抽取50件,测得它们所承受的最大拉力的平均值为15.8公斤,样本标准差S=0.5公斤.取显著性水平α=0.01,试问这些样本能否接受厂方的结论.(附表:t0.01(49)=2.4049,t0.01(50)=2.4029.)
生产一种工业用绳,其质量指标是绳子所承受的最大拉力,假定该指标服从正态分布,原来生产的绳子指标均值μ0=15公斤,采用一种新原材料后,厂方称这种原材料能提高绳子的质量,为检验厂方的结论是否真实,从其新产品中随机抽取50件,测得它们所承受的最大拉力的平均值为15.8公斤,样本标准差S=0.5公斤.取显著性水平α=0.01,试问这些样本能否接受厂方的结论.(附表:t0.01(49)=2.4049,t0.01(50)=2.4029.)
【正确答案】:

由已知,本题属于“单正态总体,方差未知,对均值的检验”。设待检验假设 ,这是对总体均值的右侧检验;根据已知选择检验统计量 ,根据显著水平求得拒绝域W=(,+∞)=(2.4049,+∞)再由已知,s=0.5,n=50,得到统计量的观测值 显然,,落入拒绝域,从而拒绝原假设,接受,即可以认为新的原材料确实提高了绳子所能承受的最大拉力。


Top