设y=y(x)是由下列方程确定的隐函数,求dy/dx.
(1)ex=xy2-siny;
(2)y=2x+cos(x-y);
设y=y(x)是由下列方程确定的隐函数,求dy/dx.
(1)ex=xy2-siny;
(2)y=2x+cos(x-y);
【正确答案】:(1)令F(x,y)ex-xy2+siny,则 ∂F/∂x=ex-y2,∂F/∂y=-2xy+cosy, dy/dx=-[(∂F/∂x)/( ∂F/∂y)] 所以 =-[(ex-y2)/(-2xy+cosy)] =(ex-y2)/(2xy-cosy) (2)令F(x,y)=2x+cos(x-y)-y,则 ∂F/∂x=2-sin(x-y),∂F/∂y=sin(x-y)-1, dy/dx=-[(∂F/∂x)/( ∂F/∂y)] 所以 =-[2-sin(x-y)]/[sin(x-y)-1] =[2-sin(x-y)]/[1-sin(x-y)
Top