求下列二元函数的定义域
(1)z=√x+y;
(2)z=√(9-x2-y2)+ln(x2-y).
求下列二元函数的定义域
(1)z=√x+y;
(2)z=√(9-x2-y2)+ln(x2-y).
【正确答案】:(1)因为x≥0,所以原函数的定义域为 D(x,y)={(x,y)|≥0,y∈R}. (2)因为9-x2-y2≥0,x2-y>0,即x2+y2≤9,y<x2,故原函数的定义域为 D(x,y)={(x,y)|x2+y2≤9,y<x2).
Top