设区域D:x2+y2≤a2(a>0),求a的值,
使∫∫D2-x2-y2)dxdy=π.
设区域D:x2+y2≤a2(a>0),求a的值,
使∫∫D2-x2-y2)dxdy=π.
【正确答案】:令x=rcosθ,y=rsinθ, ∫∫D√(a2-x2-y2)dxdy= ∫0dθ∫0a√(a2-r2)rdr =2π∫0a√(a2-r2)[-(1/2)]d(a2-r2) =-(2/3)π(a2-r2)3/20a =2a3π/3=π, ∴a=3√(3/2)
Top