求下列函数的二阶偏导数:
(1)z=x4+y4-4x2y2;
(2)z=sin(3x-2y).
【正确答案】:(1) ∂z/∂x=4x3-8xy2, ∂z/∂y=4y3-8x2y, ∂2z/∂x2=12x2-8y2, ∂2z/∂x∂y=-16xy=∂2z/∂y∂x, ∂2z/∂y2=12y2-8x2. (3) ∂z/∂x=3cos(3x-2y), ∂z/∂y=-2cos(3x-2y), ∂2z/∂x∂y=2z/yx=-3sin(3x-2y)•(-2) =6sin(3x-2y), ∂2z/∂x2=-9sin(3x-2y), ∂2z/∂y2=-2•[-sin(3x-2y)]•(-2) =-4sin(3x-2y).