求双曲线x2/a2-y2/b2=1上的点(x0,y0)处的切线方程.
【正确答案】:所求切线的斜率为k=y′∣x=x0在双曲线方程的两边对z求导,得(x2/a2)'=(1)',2x/a2-2yy'/b2=0,y'=b2/a2y,代入x=x0,y=0,得到双曲线在点(x0,y0)处的切线斜率k=y'∣x=x0=b2x0/a2y0所求切线方程为y-y0=(b2x0/a2y0)(x-x0),即(y-y0)y0/b2=(x-x0)x0/a2即x0x/a2-y0y/b2=x20/a2-y20/b2因为点(x0,y0)在双曲线上,所以x20/a2-y20/b2=1,于是所求切线为x0x/a2-y0y/b2=1.