求∫sin√xdx
求∫sin√xdx
【正确答案】:令√x=u,则x=u2(u≥0),dx=2udu,于是 ∫sin√xdx=∫sinu•2udu =2∫nsinudu =-2∫ud(cosu) =-2(ucosu-∫cosudu) =-2(ucosu-sinu)+C =2(sin√x-√xcos√x)+C.
Top