判断下列矩阵A是否可逆,若可逆求出A-1
A=
(100
120
123)
判断下列矩阵A是否可逆,若可逆求出A-1
A=
(100
120
123)
【正确答案】:|A|= |1 0 0| 1 2 0| 1 2 3| =6, 故矩阵A可逆. A11= |2 0| |2 3| =6, A12=- |2 0| |2 3| =-3, A13= |1 2| |1 2| =0. A21=- |0 0| |2 3| =0, A22= |1 0| |1 3| =3, A23=- |1 0| |1 2| =-2, A31= |0 0| |2 0| =0, A32=- |1 0| |1 0| =0, A33= |1 0| |1 2| =2. 则 A*= (6 0 0 -3 3 0 0 -2 2) 则 A-1=A*/|A|=1/6 (6 0 0 -3 3 0 0 -2 2) = (1 0 0 -1/2 1/2 0 0 -1/3 1/3)
Top