已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x2+8x2x3,用正交变换将其化为标准形,并写出相应的正交变换.
【正确答案】:f的矩阵A= (0 2 -2 2 4 4 -2 4 -3) |λE-A|= |λ -2 2| |-2 λ-4 -4| |2 -4 λ+3| = |λ -2 2-2λ| |-2 λ-4 0 | |2 -4 λ-1| = |λ+4 -10 0 | -2 λ-4 0 | 2 -4 λ-1| =(λ-1)(λ2-36), 得A的特征值λ1=1,λ2=6,λ3=-6. λ1=1时,E-A= (1 -2 2 -2 -3 -4 2 -4 4) → (1 -2 2 0 -7 0 0 0 0) → (1 0 2 0 1 0 0 0 0) 得A的属于特征值λ1=1的特征向量ξ1= (2 0 -1) λ2=6时,6E-A= (6 -2 2 -2 2 -4 2 -4 9) → (1 -1 2 3 -1 1 2 -4 9) → (1 -1 2 0 2 -5 0 -2 5) → (1 -1 2 0 2 -5 0 0 0) → (1 -1 2 0 1 -5/2 0 0 0) → (1 0 -1/2 0 1 -5/2 0 0 0) 得A的属于特征值λ2=6的特征向量ξ2= (1 5 2) λ3=-6时,-6E-A= (-6 -2 2 -2 -10 -4 2 -4 -3) → (1 5 2 -3 -1 1 2 -4 -3) → (1 5 2 0 2 1 0 0 0) → (1 5 2 0 1 1/2 0 0 0) → (1 0 -1/2 0 1 1/2 0 0 0 得A的属于特征值λ3=-6的特征向量ξ3= (1 -1 2) 由于ξ1,ξ2,ξ3已两两正交,只需将其单位化即可,得 η1=ξ1/||ξ1||= (2/√5 0 -1/√5), η2=ξ2/||ξ2||= (1/√30 5/√30 2/√30), η3=ξ3/||ξ3||= (1/√6 -(1/√6) 2/√6) 令P=(η1,η2,η3)= (2/√5 1/√30 1/√6 0 5/√30 -1/√6 -1/√5 2/√30 2/√6) f经正交变换x=Py化为标准形 f(x1,x2,x3)=xTAx=yTPTAP=y12+6y22-6y32.