已知齐次线性方程组
(1):
{x1+2x2+3x3-x4=0
{2x1+3x2+x3+x4=0
(2):
{3x1+2x2+x3-x4=0
{5x1+5x2+2x3=0
求方程组(1)与(2)的全部非零公共解.
【正确答案】:若(1)(2)有非零公共解,则方程组 {x1+2x2+3x3-x4=0 {2x1+3x2+x3+x4=0 {3x1+2x2+x3-x4=0 {5x1+5x2+2x3 =0 有非零解,对其系数矩阵作初等行变换 A= (1 2 3 -1 2 3 1 1 3 2 1 -1 5 5 2 0) → (1 2 3 -1 0 -1 -5 3 0 -4 -8 2 0 -5 -13 5 → (1 2 3 -1 0 1 5 -3 0 0 12 -10 0 0 0 0) → (1 0 -7 5 0 1 5 -3 0 0 1 -5/6 0 0 0 0) → (1 0 0 -5/6 0 1 0 7/6 0 0 1 -5/6 0 0 0 0 由于系数矩阵的秩为3,所以基础解系由4-3=1个解向量构成,取x4为自由未知量,得同解 方程组 {x1=(5/6)x4 {x2=-(7/6)x4 {x3=(5/6)x4 取x4=1,得基础解系ξ= (5/6 -7/6 5/6 1), 故其通解为cξ(c为任意常数),因此(1)(2)有非零公共解 ( 5/6 -7/6 5/6 1) (c为任意常数).