求解线性方程组
{2x1-x2+3x3+2x4=0
{9x1-x2+14x3+2x4=1
{3x1+2x2+5x3-4x4=1
{4x1+5x2+7x3-10x4=2
【正确答案】:对方程组的增广矩阵作初等行变换 (A,β)= (2 -1 3 2 ┆ 0 9 -1 14 2 ┆ 1 3 2 5 -4 ┆ 1 4 5 7 -10┆ 2) → (-1 -3 -2 6 ┆ -1 9 -1 14 2 ┆ 1 3 2 5 -4 ┆ 1 4 5 7 -10 ┆ 2) → (-1 -3 -2 6 ┆ -1 0 -28 -4 56 ┆ -8 0 -7 -1 14 ┆ -2 0 -7 -1 14 ┆ -2) → (1 3 2 -6 ┆ 1 0 7 1 -14 ┆ 2 0 0 0 0 ┆ 0 0 0 0 0 ┆ 0) → (1 0 11/7 0 ┆ 1/7 0 1 -2 -2 ┆ 2/7 0 0 0 0 ┆ 0 0 0 0 0 ┆ 0) 系数矩阵和增广矩阵的秩均为2,所以方程组有无穷多个解,同解方程组为 {x1=-(11/7)x3+1/7 {x2=-(7/11)x3+2x4+2/7 令自由未知量x3=x4=0,得方程组的一个特解 η*= (1/7 2/7 0 0) 方程组的导出组的同解方程组为 {x1=-(11/7)x3 {x2=-(1/7)x3+2x4 设自由未知量分别取值 (x2 x4) = (7 0), (0 1), 则导出组的基础解系为 ξ1= (-11 -1 7 0), ξ2= (0 2 0 1) 故方程组的通解为 (1/7 2/7 0 0) +c1 (-11 -1 7 0) +c2 (0 2 0 1) (c1,c2为任意常数).