用高斯消元法解方程组
{x1+3x2+5x3-4x4=1
{x1+3x2+2x3-2x4+x5=-1
{x1-2x2+x3-x4-x5=3
{x1-4x2+x3+x4-x5=3
{x1+2x2+x3-x4+x5=-1
【正确答案】:对它的增广矩阵作初等行变换,把它化成阶梯形. (A,β)= (1 3 5 -4 0 ┆ 1 1 3 2 -2 1 ┆ -1 1 -2 1 -1 -1 ┆ 3 1 -4 1 1 -1 ┆ 3 1 2 1 -1 1 ┆ -1) → (1 3 5 -4 0 ┆ 1 0 0 -3 2 1 ┆ -2 0 -5 -4 3 -1 ┆ 2 0 -7 -4 5 -1 ┆ 2 0 -1 -4 3 1 ┆ -2) → (1 3 5 -4 0 ┆ 1 0 -1 -4 3 1 ┆ -2 0 -5 -4 3 -1 ┆ 2 0 -7 -4 5 -1 ┆ 2) 0 0 -3 2 1 ┆ -2) → (1 3 5 -4 0 ┆ 1 0 -1 -4 3 1 ┆ -2 0 0 16 -12 -6 ┆ 12 0 0 24 -16 -8 ┆ 16 0 0 -3 2 1 ┆ -2) → (1 3 5 -4 0 ┆ 1 0 -1 -4 3 1 ┆ -2 0 0 8 -6 -3 ┆ 6 0 0 3 -2 -1 ┆ 2 0 0 -3 2 1 ┆ -2) → (1 3 5 -4 0 ┆ 1 0 -1 -4 3 1 ┆ -2 0 0 -1 0 0 ┆ 0 0 0 3 -2 -1 ┆ 2 0 0 0 0 0 ┆ 0) → (1 3 5 -4 0 ┆ 1 0 -1 -4 3 1 ┆ -2 0 0 1 0 0 ┆ 0 0 0 0 2 1 ┆ -2 0 0 0 0 0 ┆ 0) 即得同解方程组 {x1+3x2+5x3-4x4 =1 {-x2-4x3+3x4+x5=-2 { x3 =0 { 2x4+x5=-2 以x5为自由未知量,逐次解之,得 {x1=-(1/2)x5 {x2=-1-(1/2)x5 {x3=0, {x4=-1-(1/2)x5 故方程组的一般解为x1=-(1/2)c,x2=-1-(1/2)c,x3=0,x4=-1-(1/2)c,x5=c(c为任意常数).