用Cramer法则解方程组
{2x1-x2+3x3+2x4=6
{3x1-3x2+3x3+2x4=5
{3x1-x2-x3+2x4=3
{3x1-x2-3x
用Cramer法则解方程组
{2x1-x2+3x3+2x4=6
{3x1-3x2+3x3+2x4=5
{3x1-x2-x3+2x4=3
{3x1-x2-3x3-x4=4
【正确答案】:|A|= |2 -1 3 2| |3 -3 3 2| |3 -1 -1 2| |3 -1 3 -1| =-70≠0,所以方程组有唯一解,又 |A1|= |6 -1 3 2| |5 -3 3 2| |3 -1 -1 2| |4 -1 3 -1| =-70,|A2|= |2 6 3 2| |3 5 3 2| |3 3 -1 2| |3 4 3 -1| =-70. |A3|= |2 -1 6 2| |3 -3 5 2| |3 -1 3 2| |3 -1 4 -1| =-70,|A4|= |2 1 3 6| |3 -3 3 5| |3 -1 -1 3| |3 -1 3 4| =-70, 由Cramer法则,x11,x2=1,x3=1,x4=1.
Top