利用级数收敛的定义判定下列级数的敛散性,在收敛的时候求出和:
(1)∑∞n=1(1/√n-1/√n+1);(2)∑∞n=1(-1)n-1/3n;
(3)∑∞n=11/α2n-1;(4)∑∞n=11/[(n+1)(n+3)].
【正确答案】:(1)sn=(1/1-1/√2)+(1/√2-1/√3+(1/√3-1/√4+…+(1/√n-1/√n+1=1-1/√n+1 所以 limn→∞sn=limn→∞(1-1/√n+1)=1 故该级数收敛,且∑∞n=1(1/√n-1/√n+1)=1 (2)sn=1/3-1/32+1/33-1/34+…+(-1)n-1/3n ={1/3[1-(-(1/3))n]}/[1-(-(1/3))]=1/4[1-(-(1/3))n] 所以 limn→∞sn=limn→∞1/4[1-(-(1/3))n]=1/4 故该级数收敛,且∑∞n=1(-1)n-1/3n=1/4 (3)sn=1/α+1/α3+1/α5+…+1/α2n-1 当α2≠1时 sn=[1/α•(1-1/α2n)]/(1-1/α2n)=[α(1-α2n)/(α2-1) 所以 limn→∞sn= {α/(α2-1),α2>1 {∞, α2<1 = {α/(α2-1),|α|>1 {∞, |α|<1 当α2=1时,即α=1或α=-1 若α=1,则sn=n 所以 limn→∞sn=+∞ 若α=-1,则sn=-n 所以 limsn=-∞ 所以 当|α|≤1时,级数∑∞n=11/α2n-1发散 当|α|>1时,级数∑∞n=11/α2n-1收敛且∑∞n=11/α2n-1=α/α2-1 (4)=1/(2•4)+1/(3•5)+1/(4•6)+…+1/(n+1)(n+3) =1/2[1/2-1/4+1/3-1/5+1/4-1/6+…+1/(n+1)-1/(n-3)] =1/2[1/2+1/3-1/(n+2)-1/(n+3)] =5/12-1/2(n+2)+1/2(n+3) limn→∞sn=limn→∞[5/12-1/2(n+2)-1/2(n+3)]=5/12 故该级数收敛且∑∞n=[11/(n+1)(n+2)]=5/12