用消元法的矩阵形式求下列线性方程组
(1)
{x1-x2+x3=1
{2x1+x2+4x3=6
{x1+2x2+3x3=5
(2)
{x1+x2+x3=1
{x1+2x2+x3=2
{2x1+3x2+2x3=3
的全部解.
【正确答案】:(1)对增广矩阵作初等行变换,得 (1 -1 1 ┆ 1 2 1 4 ┆ 6 1 2 3 ┆ 5) → (1 -1 1 ┆ 1 0 3 2 ┆ 4 0 3 2 ┆ 4) → (1 -1 1 ┆ 1 0 1 2/3 ┆ 4/3 0 0 0 ┆ 0) → (1 0 5/3 ┆ 7/3 0 1 2/3 ┆ 4/3 0 0 0 ┆ 0) 因此同解方程组为 {x1 +(5/3)x3=7/3 { x2+(2/3)x3=4/3 x3是自由未知量,方程组的全部解为 {x1=7/3-(5/3)k {x2=4/3-(2/3)k (k为任意实数) {x3=k (2)对增广矩阵作初等行变换得 (1 1 1 ┆ 1 1 2 1 ┆ 2 2 3 2 ┆ 3) → (1 1 1 ┆ 1 0 1 0 ┆ 1 0 1 0 ┆ 1) → (1 0 1 ┆ 0 0 1 0 ┆ 1 0 0 0 ┆ 0) 因此同解方程组为 {x1= +x3==0 { x2==1 x是自由未知量,方程组的全部解为 {x1==-k {x2==1 (k为任意实数) {x3==k.