证明下列等式:
(1)
|ααbb|
|2αα+b2b|
|111|
=(α-b)3;
(2)
|b2+c1c1+α1α1+b1|
|b2+c2c2+α2α2+b2|
|b3+c3c3+α3α3+b3|
=2
|α1b1c1|
|α2b2c2|
|α3b3c3|
【正确答案】:(1) |α2 αb b2| |2α α+b 2b| |1 1 1 | = |α2-b2 αb-b2 b2| |2α-2b α-b 2b| |2α-2n α-b 2b| |0 0 1| = |(α-b)2 αb-b2 b2| | 0 α-b 2b| | 0 O 1| =(α-b)3 (2) |b1+c1 c1+α1 α1+b1| |b2+c2 c2+α2 α2+b2| |b3+c3 c3+3α α3+b3| = |b1 c1+α1 α1+b1| |b2 c2+α2 α2+b2| |b3 c3+α3 α3+b3| + |c1 c1+α1 α1+b1| |c2 c2+α2 α2+b2| |c3 c3+α3 α3+b3| = |b1 c1+α1 α1| |b2 c2+α2 α2| |b3 c3+α3 α3| + |c1 α1 α1+b1| |c2 α2 α2+b2| |c3 α3 α3+b3| = |b1 c1 α1| |b2 c2 α2| |b3 c3 α3| + |c1 α1 b1| |c2 α2 b2| |c3 α3 b3| =- |α1 c1 b1| |α2 c2 b2| |α3 c3 b3| - |α1 c1 b1| |α2 c2 b2| |α3 c3 b3| = |α1 b1 c1| |α2 b2 c2| |α3 b3 c3| + |α1 b1 c1| |α2 b2 c2| |α3 b3 c3| =2 |α1 b1 c1| |α2 b2 c2| |α3 b3 c3|