计算下列不定积分:
(1)∫(x2-1/x2+√x/2)dx;
(2)∫(x2+1)2dx;
(3)∫(√x+1)(x-1)dx;
(4)∫(2-sec2x)dx;
(5)∫[3x-2/√(1-x2)]dx;
(6)∫22x3xdx;
(7)∫(
计算下列不定积分:
(1)∫(x2-1/x2+√x/2)dx;
(2)∫(x2+1)2dx;
(3)∫(√x+1)(x-1)dx;
(4)∫(2-sec2x)dx;
(5)∫[3x-2/√(1-x2)]dx;
(6)∫22x3xdx;
(7)∫(1-1/x2)√x√xdx;
(8)∫[(1-e2x)/(1-ex)]dx
(9)∫ex[1-e-x/(1+x2)]dx;
(10)∫cot2xdx
(11)∫[x2/(1+x2)]dx;
(12)∫[(1+x+x2)/x(1+x2)]dx
(13)∫cos2(x/2)dx;
(14)∫secx(secx-tanx)dx;
(15)∫[cos2x(cosx-sinx)]dx;
(16)∫dx/(1+sinx)
(17)∫(cos2x/sin2xcos2x)dx
【正确答案】:(1)∫(x2+1/x2+√x/2)=∫(x2-x-2+(1/2)x1/2)dx =(1/3)x3+1/x+(1/3)x3/2+C (2)∫(x2+1)2dx=∫x4+2x2+ldx=(1/5)x5+(2/3)x3+x+C (3)∫(√x+1)(x-1)dx=√(x3/2-x1/2+x-1)dx =(2/5)x5/2-(2/3)x3/2+(1/2)x2-x+C (4)∫(2-sec2x)dx=2x-tanx+C (5)∫[3x-2/√(1-x2)]dx=∫3xdx-2∫[1/√(1-x2)]dx =3/x-ln32arcsinx+C (6)∫22x•3xdx=∫4x•3xxdx=∫12xdx=12x/lm2+C (7)∫(1-1/x2)√x√xdx=∫(1-x-2)•x3/4dx=∫x3/4-x-(5/4)dx= (4/5)x5/4+4x-(1/4)+C (8)∫[(1-e2x)/(1-ex)]dx=∫1+exdx=x+ex+C (9)∫ex[1-ex/1+x2)]dx=∫x[ex-1/(1+x2)]d=ex-arcyanx+C (10)∫cot2xdx′=∫(csc2c-1)=-cost-x+C (11)∫[x2/(1+x]dx=∫[1-1/(1/x2)]dx=x-arctanx+C (12)∫[(1+x+x2)/x(1+x2)]dx=∫{(1+x2)/[x(1+x2)]+x/[x(1+x2)]}dx= ∫[(1/x+1/(1+x2)]=ln|x|+arctanx+C (13)∫cos2(x/2)dx=∫[(1+cosx)/2]dx=x/2+sinx/2+C (14)∫secx(secx-tanx)dx=∫sec2x-secxtanxdx=tanx-secx+C (15)∫[cos2x/(cosx-sinx)]dx=∫[(cos2-sin2x)/(cosx-sinx)]dx=∫cosx+sinxdx=sinx—cosx+C (16)∫dx/(1+sinx)=∫(1-sinx)/cos2x=∫sec2x-secx•tanxdx=tanx-secx+C (17)∫(cos2x/sin2xcos2x=∫[(cosx2-sin2x)/sin2xcos2x]=∫(1/sin2x-1/cos2)dx=-cotx-tanx+C.
Top