设f(x)为连续函数,且满足5x3+40=∫cxf(t)dt,求f(x)及c.
设f(x)为连续函数,且满足5x3+40=∫cxf(t)dt,求f(x)及c.
【正确答案】:f(x)两边关于x求导数,得15x2=f(x) 因此∫cx15t2dt=5t3|ex(x3-c3)=5x3+40 所以.c3=-8,c=-2.
Top