企源知识库
专业知识收录平台
求由曲线y=-x
2
+1,x=0,x=2及x轴所围平面图形的面积S及该平面图形绕x轴旋转所成的旋转体体积V.
分类:
高等数学(工专)(00022)
发表:2024年08月13日 03时08分30秒
作者:
admin
阅读:
(2)
求由曲线y=-x
2
+1,x=0,x=2及x轴所围平面图形的面积S及该平面图形绕x轴旋转所成的旋转体体积V.
【正确答案】:S=∫
0
1
(-x
2
+1)dx+∫
1
2
(x
2
-1)dx =-(1/3)x
3
|
0
1
+x|
0
1
+(1/3)x
3
|
1
2
-x|
1
2
=7/3, V=π∫
0
2
f
2
(x)dx=π∫
0
2
(-x
2
+1)
2
dx =π∫
0
2
(x
4
-2x
2
+1)dx=π[(1/5)x
5
|
0
2
-(2/3)x
3
|
0
2
+x|
0
2
]=(46/15)π
上一篇
房地产营销基本理念可从哪些方面来考察?
下一篇
问卷法属于
Top
首页
后台登录
×
×