求下列定积分:
(1)∫01xcosπxdx;
(2)∫0√2/2arccosxdx;
(3)∫01xarctanxdx
(4)∫01x2ex/2dx;
(5)∫01xln(1+x2)dx;
(6)∫1e(lnx/x3)dx
(7)∫π/4π/2(x/sin2x)dx;
(8)∫0πe-xsinxdx;
(9)∫e1/e|lnx|dx(10)∫-1/21/2(xarcsinx/√1-x2)dx;
(11)已知xex为f(x)的一个原函数,求∫01xf′(x)dx.
【正确答案】:(1)∫01xcosπxdx=1/π∫01(sinπx) =1/π[xsinx|01-∫01sinπxdx] =(1/π2)cosπx|01=-(2/π2) (2)∫0√2/2arccosxdx=xarccosxdx=xarccos|0√2/2-∫0√2/2x•-(1/√1-x2)dx =xarccosx|0√2/2-1/2∫0√2/2[d(1-x2)/√1-x2 =xarccosx|0√2/2-√1-x2|0√2/2 =(√2/8)π-√2/2+1 (3)∫01xarctanxdx=(1/2)∫01arctannxdx2 =1/2[x2arctanx|01-∫01x2/(1+x2)dx] =1/2[π/4-(x-arctanx)|01 =π/4-1/2 (4)∫01x2ex/2dx =2∫01x2dex/2 =2[x2ex/2|01-∫01ex/2•2xdx] =2[e1/2-4∫01xdeπ/2] =2[e1/2-4xex/2|01+4∫01ex/2dx] =10e1/2-16 (5)∫01xln(1+x2)dx=(1/2)∫01ln(1+x2)d(x2+1) =[(x2+1)/2]ln(1+x2)|01-1/2∫01[2x(x2+1)/(x2)+1]dx =ln2-x2/2|01=ln2-1/2 (6)∫1e(lnx/x3)dx=-(1/2)∫e1lnxd(1/x)2 =-(1/2)[1/x2lnx|1e-∫1e1/x2•(1/x)dx] =-(1/2)[1/e2+1/2x2|1e] =1/4-3/4e2 (7)∫π/4π/2(x/sin2x)dx=-∫π/4π/2xdcotx|π/4π/2+∫π/4π/2cotxdx =π/4+(1/2)ln2 (8)∫0πe-xsinxdx =-∫0πsinde-x =-sinx•e-x|0π+∫0πe-xcosxdx =-∫0πcosxde-x =-e-xcosx|0π+∫0πe-x(-sinx)dx 所以 20πe-xsinxdx=-e-xcosx|0π=e-π+1 所以 ∫0πexsinxdx=(e-π+1)/2 (9)∫1/ee|lnx|dx =-1/e1lnxdx+eelnxdx =-xlnx|1/e1+∫1/e1xdlnx+xlnx-|e1-∫1exdlnx =-(1/e)+x|1/e1+e-x|1e =2(1-e-1) (10)∫-(1/2)1/2(xarcsinx/√1-x2)dx =-∫01/2(arcsinx/√1-x2)d(1-x2) =-2∫01/2arcsinxd√1-x2 =-2√1-x2arsinx+|01/2+2∫01/2√1-x2darcsinx =-(√3/6)π-2x|01/2 =-(√3/6)π+1 (11)由题意知f(x)=ex+xex 故∫01xf′(x)dx=∫01xdf(x)|01-∫01f(x)dx =xf(x)|01-xex|∫01 =2e-e =e