计算∫01x2√1-x2dx.
计算∫01x2√1-x2dx.
【正确答案】:π/16 分析 令x=sint,则dx=costdt,并且t从0→π时,x单调的从0→1,所以 ∫01x2√1-x2dx=∫0π/2sin2tcos2tdt=(1/4)∫0π/2sin22tdt =1/4∫0π/2[(1-cos4t)/2]dt =1/4[(1/2)t|0π/2-(1/8)cos4td4t] =1/4[π/4-(1/8)sin4t|0π/2]=π/16
Top