∫1/√1+exdx
∫1/√1+exdx
【正确答案】:令1+ex=t2,则x=ln(t2-1),dx=2tdt/(t2-1) ∫(1/√1+ez)dx=∫2t/t(t2-1)dt=2∫[1/(t2-1)]dt =∫[dt(t-1)]-∫[dt/(t+1)]=ln|(t-1)/(t+1)|+C =ln[(√1+ex-1)/(√1+ex+1)]+C
Top