计算下列不定积分:
(1)∫xcosxdx;
(2)∫lnxdx;
(3)∫arccosxdx;
(4)∫xe-xdx;
(5)∫fxln(x2+1)dx;
(6)∫xsin2xdx;
(7)∫xtan2xdx;
(8)∫xe-(x/2)dx;
(9)∫fxarcsinxdx;
(10)∫ln2xdx;
(11)∫x2sin2xdx;
(12)∫(ln3x/x2)dx;
(13)∫e-2xcosxdx;
(14)∫ln(x+√x2+1)dx;
(15)∫e√xdx;
(16)∫(arccosx/√1-x)dx;
(17)∫xsinxcosxdx;
(18)∫(xcosx/sin3x)dx;
(19)∫x2/(1+x2)≥arctanxdx;
(20)∫sin(lnx)dx.
【正确答案】:(1)∫xcosxdx =∫xdsinx =xsinx-∫sinxdx =xsinx+cosx+C (2)∫lnxdx=xlnx-∫xdlnx=xlnx-x+C (3)∫arccosxdx =xarccosx-∫darccosx =xarccosx+∫xdx/√1-x2 =xarccosx+[-(1/2)]∫[(dl-x2)/√1-x2] =xarccosx-√1-x2+C (4)∫xe-xdx =∫xde-x =-xe-x+∫e-xdx =-xe-x-e-x+C (5)∫xln(x2+1)dx =1/2∫ln(x2+1)d(x2+1) =(x2+1)ln(x2+1)/2-1/2∫i(x2+1)dln(x3+1) =(x2+1)ln(x2+1)/2-1/2∫xdx =(x2+1)ln(x2+1)/2-x2/2+C (6)∫xsin2xdx =-(1/2)∫xdcos2x =-(x/2)cos2x+1/2∫cos2xdx. =-(x/2)cos2x+(1/4)sin2x+C (7)∫xtan2xdx =∫xsinxd(1/cosx) =xtanx-∫(1/cosx)dxsinx =xtanx-∫[(sinx+xcosx)/cosx]dx =xtant∫(sinx/cosx)dx-∫xdx =xtant∫+dcosx/cosx-x2/2 =xtant+ln|cosx|-x2/2+C (8)∫xe-(x/2)dx =-2∫xde-(x/2) =-2xe-(x/2)+2∫e-(x/2)dx =-2xe-(x/2)-4e-(x/2)+C (9)∫xarcsinxdx =1/2∫arcsinxdx2 =(x2/2)arcsinx-1/2∫darcsinx =(x2/2)arcsinx-1/2∫(x2/√1-x2)dx =(x2/2)arcsinx+1/2∫(√1-x2)dx-1/2∫(1/√1-x2)dx =(x2/2)arcsinx+(1/4)arcsinx+(x/4)√1-x2-(1/2)arcsinx+C =arcsinx/4(2x2-1)+x/4√1-x2+C (10)∫ln2xdx =xln2x-∫xdln2x =xln2x-∫x•2lnx•(1/x)dx =xln2x-2∫lnxdx =xln2x-2xlnx+2∫xdlnx =xln2x-2xlnx+2x+C (11)∫x2sin2xdx =∫x2•[(1-cos2x)/2]dx =∫(x2/2)dx-∫(x2/4)dsin2x =x3/6-x2/4sin2x+∫sin2x•(x/2)dx =x3/6-(x2/4)sin2x+∫-(x/4)dcos2x =x3/6-(x2/4)sin2x-(x/4)cos2x+sin2x/8+C (12)∫(ln3x/x2)dx =∫ln3xd(1/x) =-(ln3x)/x+∫1/x•3ln2x•(1/x)dx =-(ln3x/x)-3∫ln2xd(1/x) =-(ln3x/x)-3ln2x/x+∫(6lnx/x2)dx =-(ln3x/x)-3ln2x/x-∫6lnxd(1/x) =-(ln3x/x)-3ln2x/x-6lnx/x+∫(6/x)dlnx =-(ln3x/x)-3ln2x/x-6lnx/x-6/x+C (13)∫e-2xcosxdx =∫e-2xdsinx =e-2xsinx+2∫sinx•e-2xdx =e-2xsinx-2∫e-2xdcosx =e-2xsinx-2e-2xcosx+2∫cosx•e-2x•(-2)dx. =e-2xsinx-2e-xcosx-4∫e-2xcosxdx 于是5∫e-2xcosxx=e-2xsinx-(2/5)e-2xcosx+5C 所以 ∫e-2xcosxdx=(e-2x/5)sinx-(2/5)e-2xcosx+C (14)∫ln(x+√x2+1)dx =xln(x+√x2+1)-∫[x/(x+√x2+1)](1+x/√x2+1)dx =xln(x+√x2+1)-1/2∫[d(x2+1)]/√x2+1 =xln(x+√x2+1)-√x2+1+C (15)∫e√xdx =2∫√xd√x =2√xe√x-2∫e√xd√x =2√xe√x-2e√x+C (16)∫arccosx/√1-xdx =-2∫arccosxd√1-x =-2arccosx•(√1-x)+2∫√1-x•(1/√1-x2)dx =-2arccosx•(√1-x)-2∫(1/√1+x)dx =-2arccosx•√1-x-4√1+x+C (17)∫xsinxcosxdx =∫xsinxdsinx =xsin2x-∫sinx(sinx+xcosx)dx =xsin2x-∫[(1-cos2x)/2]dx-∫xsinxcosxdx =xsin2x-x/2+sin2x/4-∫xsinxcosxdx, 于是2∫xsinxcosxdx=xsin2x-x/2+sin2x/4+2C 所以∫xsinxcosxdx=xsin2x/2-x/4+sin2x/8+C=1/8(sin2x-2xcos2x)+C (18)∫ (xcosx/sin3x)dx =-(1/2)∫xdcsc2x =-(1/2)xcsc2x+1/2∫csc2xdx =-(1/2)xcsc2x-1/2cotx+C =-(1/2)xcsc2x-(1/2)cotx+C (19)∫[x2/(1+x2)]arctanxdx =∫arctanxdx-∫[1/(1+x2)]arctanxdx =xarctanx-∫xdarctanx-∫arctanxdarctanx =xarctanx-(1/2)ln(x2+1)-(1/2)arctan2x+c (20)∫fsin(lnx)dx =xsin(lnx)-∫xdsin(1nx) =xsin(lnx)-∫cos(lnx)dx =xsin(lnx)-[xcos(lnx)-∫xdcoslnx] =xsin(lnx)-[xcos(lnx)+∫sinlnxdx] 于是2∫sin(lnx)dx=xsin(lnx)-xcos(lnx)+2C 所以∫sin(lnx)dx=(x/2)[sin(lnx)-cos(lnx)]+C