讨论反常积分∫e+∞的敛散性,其中k为一常数.
【正确答案】:∫e+∞(1/xlnkx)dx=∫e+∞(1/lnkx)dlnx= {[1/(-k+1)]x-k+1|e+∞ k≠1 {ln(lnx)|e+∞ k=1 所以 当k=1时 ∫e+∞(1/xlnkx)=limb→+∞[ln(lnb)-0]=+∞ 当k>1时∫e+∞(1/xlnkx)dx=limb→+∞∫eb(1/xlnkx)dx =limb→+∞[b1-k/(1-k)-e1-k/(1-k)] =e1-k/(k-1)+limb→+∞1/(1-k)•(1/bk-1) =e1-k/(k-1) 当k<1时 ∫e∞(1/xlnkx)dx =limb→+∞∫eb(1/xlnkx)dx =limb→+∞[b1-k/(1-k)-e1-k/(1-k) 因此,当k>1时收敛,当k≤1时发散.